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de I'UniversitC, 640W Pa", France 
i Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria 
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Abstract. By making use of the system of coordinates in which the separation of the 
variables in the Hamilton-Jacobi equation takes place, we find a bi-Hamiltonian stmclure 
of a two degrees of freedom Hamiltmian system corresponding to the integrable Henon- 
Heiles Hamiltonian H =f(  p: +p:+ Aq:+ Bq;) - q;q2 - 2q:. 

Let there be given on W" a Hamiltonian vector field U for the Poisson structure (Poisson 
bracket) V. It means that the flow of U preserves V, or  equivalently, there exists a 
smooth Hamiltonian function HV such that U =  V [  ., H Y ]  (see [ 2 ] ) .  Suppose now that 
U preserves a second Poisson structure W. If V and Ware  everywhere non-degenerate 
and compatible (i.e. all of their linear combinations AV+pW are also Poisson 
structures) then the following theorem holds. 

Theorem (Dorfman and Gel'fand [Z, 41). There exists a sequence of smooth functions 
{h}, such that: 

(a) f, is a Hamiltonian of the vector field U with respect to V, 
(b) the vector field of the V Hamiltonian fk  coincides with the vector field of the 

(c) the functions {f*} are in involution with respect to both Poisson brackets. 

The importance of the above theorem lies in the fact that in certain cases the arising 
series { f k }  of functions in involution provides for the complete integrability of the 
vector field U. 

To our knowledge, however, the known examples of finite-dimensional vector fields 
satisfying the conditions of the above theorem fall within two groups: 

(i) systems with Casimir functions, i.e. the brackets V and W are degenerate (such 
as the Toda lattice 121); 

(ii) systems which can he presented as a direct product of two other Hamiltonian 
systems (the existence of a second Poisson structure is trivial). 

W Hamiltonian htl; 

Definition. The Hamiltonian system 
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possesses a bi-Hamiltonian structure provided that there exist a function p F 0 and a 
Poisson structure W such that: 

(i)  the flow of the vector field p V [  ., H,] preserves W; 
(ii) the corresponding first integrals HV and Hw are functionally independent, 
If (1) is a two degrees of freedom system having a bi-Hamiltonian structure then 

it is completely integrable. The second integral Hw is easily reconstructed from the 
Poisson structures V, W and the functions p. Hy. If N > 2 then it is an open question 
whether the Dorfman-Gel’fand theorem can be generalized for systems having a 
bi-Hamiltonian structure with p f constant. 

In the present letter we shall find a bi-Hamiltonian structure (with p s constant) 
of a two degree of freedom Hamiltonian system (1) which does not fall within the two 
groups of examples described above. 

Let H be the following integrable HCnon-Heiles Hamiltonian [33: 

H = f (  p:+p:+ Aq:+ Bq:) - q:q2 -2q: (2) 
and V be the standard Poisson structure on R4{p,, p2,  q,, q2) 

a a a a  
aql ap, aq2 ap2 

V=-A-+-A-. 

The second integral of the system (1) reads 

F=  4:+4q:q:+4~,(~,q,-~,q,) - ~ A ~ : ~ z + ( ~ A - B ) ( P : +  4 : ) .  
We shall use the following ( U ,  U) variables which are known to be separable for the 
corresponding Hamilton-Jacobi equation [l ,  51 

q: = T4UU q2 = U +  u + ( B  -4A)/4. 

The canonical variables ( pu, p., U, U )  on T*R2 are given by 

( -uu’31’2( P. - P”) UP” - UP,’ 
PI = Pz = 

U - U  U - U  

In these new variables the integrals of motion take the form 
H ={4up~-4~p~-16(u~-~~)+8(6A-B)(u’-~~)+(B-4A)(12A-B)(~~-~~) 

fA(4A-  B)’(u - u)} /S(U - U) 
F = uu(4p: -4~: -  16( U’- ~ ’ ) + 8 ( 6 A  - B ) ( U ’ -  U’) 

+ ( 8 - 4 A ) ( 1 2 A - B ) ( u - t 1 ) ) / ( u -  0 )  

and 
a a a a  

au ap. av ap, 
V=-h-+-h- .  

A direct computation gives 
a F  JH -=8u- aF aH -=&- 

au au a0 au 

The identities (5) suggest to define a new Poisson structure 

(3) 

(4) 

a a  a a  
a u  ap. a0 ap. 

W = U - A - + U - A - ,  
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Proposition. ( V ,  W )  provides a bi-Hamiltonian structure of the Hamiltonian system 
( 1 )  where H is the integrable H6non-Heiles Hamiltonian ( 2 ) .  

Proooof: One trivially verifies that W satisfies the Jacobi identity and hence W is 
a Poisson structure. Using ( 5 )  we obtain V [ . ,  H ] = p W [ . ,  F ] ,  where 
p = ~ u u =  - 2 s ; .  0 

In the initial coordinates ( p , . p 2 ,  q , ,  q2) the second Poisson structure W takes the 
form 

Let us define now a third Poisson structure 

i a  a i a  a 
U au ap. U au ap, 

U=--,.,-+--A--. 

The same arguments as above show that (U, V )  provides a bi-Hamiltonian structure 
oftheHamiltonianvectorfield V[,.F],as V [ . , F ] = p U [ . .  H1,where p =Suu= -2q:. 
In the initial coordinates ( p a ,  p 2 ,  q l ,  q2)  the Poisson structure U reads 

B-4A+4q2 a a 2 a a 2 a a 2p, a a 
4:  aq, ap, q1 aql ap2 q1 aq2 ap, q: ap, ap2 

U =  n -. 

Finally we note that the three Poisson structures U, V, W, turn out to be compatible 
each to the other. 

Acknowledgments are due to  J P FranGoise for valuable discussions. 
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